INDONESIAN JOURNAL OF
CLINICAL PATHOLOGY AND
MEDICAL LABORATORY
Majalah Patologi Klinik Indonesia dan Laboratorium Medik

EDITORIAL TEAM

Editor-in-chief:
Puspa Wardhani

Editor-in-chief Emeritus:
Prihatini
Krisnowati

Editorial Boards:
Jusak Nugraha, Ida Parwati, Adi Koesoema Aman, Edi Widjajanto, Rahayuningsih Dharma, Aryati,
Kusworini Handono, Mansyur Arif, Budi Mulyono, Rismawati Yasvir, Yuyun Widaningsih, Purwanto AP,
Osman Sianipar, Umi Solekhab Intansari, Banundari Rachmawati, Andaru Dahsindewi, Agnes Rengga Indrati,
Nyoman Suci Widyastuti, Hani Susianti, Efribda, Rikarni, Tenri Esa, Uleng Bahrur, July Kumalawati,
Liong Boy Kurniawan, Ninik Sukartini, Maimun Zulhidah Arthamin, Tahono, Rachmawati Muhidin

Editorial Assistant:
Dian Wahyu Utami

Language Editors:
Yolanda Probohoesodo, Nurul Fitri Hapsari

Layout Editor:
Dian Wahyu Utami

Editorial Adress:
d/a Laboratorium Patologi Klinik RSUD Dr. Soetomo, Gedung Diagnostik Center Lt. IV
Jl. Mayjend. Prof. Dr Moestopo 6–8 Surabaya, Indonesia
Telp/Fax. (031) 5042113, 085-733220600 E-mail: majalah.ijcp@yahoo.com, jurnal.ijcp@gmail.com
Website: http://www.indonesianjournalofclinicalpathology.or.id

Accredited No. 36a/E/KPT/2016, Tanggal 23 Mei 2016
CONTENTS

RESEARCH

Serum Zinc and C-Reactive Protein Levels as Risk Factors for Mortality in Systemic Inflammatory Response Syndrome
(Kadar Zinc dan C-Reactive Protein Serum Sebagai Faktor Kebahayaan Kematian di Pasien Systemic Inflammatory Response Syndrome)
Dwi Retnoningrum, Banundari Rachmawati, Dian Widyaningrum .. 1–5

Correlations between Mean Platelet Volume and Immature Platelet Fraction to Hemoglobin A1c in Patients with Type 2 Diabetes Mellitus
(Kenasaban antara Mean Platelet Volume dan Immature Platelet Fraction terhadap Hemoglobin A1c di Pasien Diabetes Melitus Tipe 2)
Dian W Astuti, Sony Wibisono, Arifoel Hajat, Sidarti Soehita .. 6–11

Methicillin-Resistant Staphylococcus Aureus Colonization and Screening Method Effectiveness for Patients Admitted to the Intensive Care
(Kejadian dan Keetapatan Penapisan Kolonisasi Methicillin-Resistant Staphylococcus aureus di Pasien Perawatan Intensif)
Andaru Dahesihdewi, Budi Mulyono, Iwan Dwiprahasto, Supra Wimbarti ... 12–18

Correlation between Visceral Adipose Tissue-Derived Serpin with Fasting Blood Glucose Level in Obesity
(Hubungan Kadar Visceral Adipose Tissue-Derived Serpin Dengan Kadar Glukosa Darah Puasa Pada Kegemukan)
Novi Khila Firani, Agustin Iskandar, Anik Widijanti, Nonong Eriani .. 19–23

Serum Glial Fibrillary Acidic Protein Levels Profile in Patients with Severe Traumatic Brain Injury
(Profil Kadar Glial Fibrillary Acidic Protein Serum di Pasien Cedera Otak Berat)
Arief S. Hariyanto, Endang Retnowati, Agus Turchan .. 24–28

Phylogenetic Profile of Escherichia coli Causing Bloodstream Infection and Its Clinical Aspect
(Profil Filogenetik Escherichia coli Penyebab Infeksi Aliran Darah dan Aspek Klinisnya)
Osman Sianipar, Widya Asmara, Iwan Dwiprahasto, Budi Mulyono ... 29–35

Comparison of Glycemic State in Patients with and without Hyperuricemia
(Perbedaan Status Glikemia pada Pasien dengan dan tanpa Hiperurisemia)
Corrie Abednego, Banundari Rachmawati, Muji Rahayu .. 36–41

Analysis of Laboratory Parameters as Sepsis Markers in Neonatal with Hyperbilirubinemia
(Analisis Tolok Ukur Laboratorium Sebagai Petanda Sepsis di Neonatus dengan Hiperbilirubinemia)
Bachtiar Syamsir, Rachmawati Muhiddin, Uling Bahrun ... 42–46

Correlation Percentage of S and G2/M with Percentage of Lymphoblasts in Pediatric Acute Lymphoblastic Leukemia
(Kenasaban Persentase S dan G2/M dengan Persentase Limfoblas di Pasien Leukemia Limfoblastik Akut Anak)
Erawati Armayani, Yetti Hernaningsih, Endang Retnowati, Suprapto Ma’at, I Dewa Gede Ugrasena . 47–52
Correlation of Blast Percentage to CD34 of Bone Marrow in All Pediatric Patients
(Kenasaban Persentase Blas Dengan CD34 di Sumsum Tulang pada Pasien ILA Anak)
Rahmi Rusanti, Yetti Hernaningisih, Endang Retnowati, Mia Ratwita Andarsini, Andy Cahyadi 53–58
Analysis of Decreased Glucose Level in Stored Samples Correlated to Serum Separation and Temperature Storage
(Analisis Penurunan Glukosa Dari Sampel Yang Disimpan Dalam Kaitannya Dengan Pemisahan Serum dan Suhu Penyimpanan)
Gustamin, Liong Boy Kurniawan, Ruland DN Pakasi ... 59–63
Diagnostic Concordance between Next Generation and High Sensitive Troponin-I in Angina Pectoris Patients
(Kesesuaian Diagnostik Troponin-I Next generation dan High sensitive di Pasien Angina Pectoris)
Erna R Tobing, Jusak Nugraha, Muhammad Amminuddin ... 64–69
Elevated Serum S100B Protein Level as a Parameter for Bad Outcome in Severe Traumatic Brain Injury Patients
(Peningkatan Kadar Serum Protein S100B Sebagai Tolok Kelaaraan Buruk di Pasien Cedera Kepala Berat)
Ridha Dharmajaya, Dina Keumala Sari, Ratna Akbari Ganie ... 70–75
Analysis of Mean Platelet Volume As A Marker For Myocardial Infarction and Non-Myocardial Infarction in Acute Coronary Syndrome
(Analisis Mean Platelet Volume sebagai Pembeda Infark Miokard dan Non-Infark Miokard di Sindrom Koroner Akut)
Wandani Syahrir, Liong Boy Kurniawan, Darmawaty Rauf .. 76–80
Anti-Dengue IgG/IgM Ratio for Secondary Adult Dengue Infection in Surabaya
(Rasio IgG/IgM Anti Dengue untuk Infeksi Dengue Sekunder Dewasa di Surabaya)
Aryati, Puspa Wardhani, Ade Rochaeni, Jeine Stela Akualing, Usman Hadi ... 81–85
Analysis of Blood Urea Nitrogen/Creatinin Ratio to Predict the Gastrointestinal Bleeding Tract Site
(Analisis Rasio Blood Urea Nitrogen/Kreatinin Untuk Meramalkan Lokasi Perdarahan pada Saluran Cerna)
Arfandhy Sanda, Mutmainnah, Ibrahim Abdul Samad ... 86–90
The Differences of Sodium, Potassium and Chloride Levels in STEMI and NSTEMI Patients
(Perbedaan Kadar Natrium, Kalium dan Klorida di Pasien STEMI dan NSTEMI)
Freddy Ciptono, Muji Rahayu .. 91–94
LITERATURE REVIEW

Macrophage Autophagy in Immune Response
(Otofagi Makrofag dalam Respons Imun)
Jusak Nugraha .. 95–101

CASE REPORT

Very Severe Hypertriglyceridemia in Suspected Familial Chylomicronemia Infant
(Hipertrigliseridemia Sangat Berat di Bayi Terduga Kausa Familial Chylomicronemia)
Fitry Hamka, Liong Boy Kurniawan, Suci Aprianti .. 102–107

Thanks to editors in duty of IJCP & ML Vol 24 No. 1 November 2017
Rismawati Yaswir, Purwanto AP, Sidarti Soehita, July Kumalawati, Aryati, Rahayuningsih Dharma, Adi Koesoema Aman, Yolanda Probahoesodo, Puspa Wardhani
RESEARCH

CORRELATION BETWEEN VISCERAL ADIPOSE TISSUE-DERIVED SERPIN WITH FASTING BLOOD GLUCOSE LEVEL IN OBESITY
(Hubungan Kadar Visceral Adipose Tissue-Derived Serpin dengan Kadar Glukosa Darah Puasa pada Kegemukan)

Novi Khila Firani1,2,3, Agustin Iskandar1,4, Anik Widijanti1, Nonong Eriani5

ABSTRACT

Adipose tissue abnormality in obesity is associated with health problems, one of which is insulin resistance. Adipocytokines are proteins produced by adipose tissue responsible for insulin sensitivity. Vaspin is one of the adipocytokines, it is produced by adipose tissue. Previous studies showed that vaspin is associated with insulin sensitivity. It is not known whether the increasing degree of obesity will change vaspin production that will lead to blood glucose level alteration, manifesting as an insulin sensitivity disorder. This study used a cross-sectional study design. Sixty (60) adults were recruited, divided according to WPRO criteria (2000), 10 people as the non-obese group, 10 people as obese I and 40 people as obese II. Hexokinase method was used to examine fasting blood glucose level. Vaspin concentration was analyzed using sandwich ELISA method. The result showed that vaspin level in obese II and obese I groups was higher than non-obese (p=0.00). Vaspin level in obese II group was not significantly different with obese I. Fasting blood glucose levels in obese II and obese I groups was higher than non-obese (p=0.017), but most of the blood glucose concentration was at a normal level. Spearman correlation test showed a significant positive correlation between vaspin level and blood glucose level, but the strength was poor (r = 0.384, p=0.001). There was a significant correlation between vaspin and fasting blood glucose level in obesity. Further study is needed employing obese people with measuring insulin sensitivity index, to elucidate the relationship between vaspin, as adipocytokine that plays a role in insulin sensitivity, and blood glucose level.

Key words: Obesity, visceral adipose tissue-derived serin protease inhibitor, fasting blood glucose

1 Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang, Indonesia. E-mail: novikhila@yahoo.com
2 Department of Biochemistry-Biomolecular, Faculty of Medicine, Brawijaya University, Malang, Indonesia
3 Department of Oral Biology, Faculty of Dentistry, Brawijaya University, Malang, Indonesia
4 Department of Clinical Parasitology, Faculty of Medicine, Brawijaya University, Malang, Indonesia
5 Clinical Pathology Laboratory, Dr Fauziah Hospital, Bireuen, Aceh, Indonesia
INTRODUCTION

The incidence of obesity in the world in recent decades has increased. Based on the results of Low's research it showed that in Japan the incidence of obesity was 23.2% and in the United States was 66.3%.\(^1\) In Indonesia, a health research in 2007 found that 10.3% of the population of people over 15 years old were obese and the percentage of females was higher than males, ie, 23.8% were females, while males were 13.9%.\(^2\)

Obesity is a state of large amounts of adipose tissue accumulation in the body. The definition of obesity according to World Health Organization (WHO) is the Body Mass Index (BMI) ≥ 30 kg/m\(^2\). In the Asia Pacific region, according to the criteria of the WHO Western Pacific Region (WPRO), the definition of obesity is BMI ≥ 25 kg/m\(^2\).\(^3\) It is estimated that approximately 70-80% of obese people will undergo abnormal metabolism.\(^4\) The cause of obesity involves many factors, including the nutritional factor and genetic abnormality. In addition, behavioral, lifestyle and environment factors also affect the increase of obesity.\(^5\)

Adipose tissue is an endocrine organ that can produce several active proteins, called adipocytokines. One of adipocytokines produced by visceral adipose tissue is visceral adipose tissue-derived serpin (Vaspin). The previous study said that vaspin can be found in the blood of healthy people, with a level in females 2.5 times higher than males. Vaspin level in the blood is thought to be influenced by the glucose metabolism. Several previous studies mentioned that a low serum level of vaspin was an independent risk factor for the occurrence of diabetes mellitus in obese people. Treatment of vaspin in experimental obese animals showed that vaspin could improve glucose tolerance and insulin sensitivity.\(^6\)\(^-\)\(^8\) Another researcher found that vaspin gene alteration was responsible for providing the compensated effect on the metabolic abnormalities associated with obesity. This statement based on a research in mice vaspin-transgenic could be protected from food-induced obesity, glucose tolerance impairment and fatty liver, whereas mice vaspin-deficient suffered from glucose intolerance.\(^9\) The role of vaspin in blood glucose regulation disorders in humans is not well understood until now. It is not known yet whether any increase in the degree of obesity will change the vaspin production and correspond with the blood glucose levels alteration, as a manifestation of insulin sensitivity disorder.

METHODS

This research was a cross-sectional study and used consecutive sampling method for subjects recruitment, from January until April. The participants were adult females (age \geq 25 years old). Informed written consent was obtained from the participants and the research protocol was done according to the Helsinki declaration and approved by Faculty of Medicine Brawijaya University Health Research Ethics Committee (certificate no. 54/EC/KEPK/02/2016).

Sixty participants enrolled in this study were divided into 3 groups based on the criteria of the Western Pacific Region (2000), 40 people with BMI ≥ 30 as obese group II, 10 people with BMI of 25–29.9 as the obese group I and 10 people with BMI <25 as a non-obese group. Criteria for inclusion of subjects used in this study were adult (> 25 years old), females and willing to follow this research voluntarily and undersigned an informed consent, after given a full explanation about this research. Exclusion criteria were pregnancy, breastfeeding females, use of hormonal contraceptives and having a history of chronic liver disease.

The participant’s venous blood samples were taken after fasting for 8–10 hours. Venous blood was taken as much as three (3) mL, collected in a non-EDTA vacutainer and then centrifuged at 3000 rpm for 10 minutes. Serum was taken for the measurement of fasting blood glucose and vaspin level.

Measurements of fasting blood glucose level used hexokinase method (Roche diagnostic, Indianapolis) with Cobas C6000 analyzer. Measurements of Vaspin level was using sandwich Enzyme-Linked Immunosorbent Aassay (ELISA) method (AdipoBioscience human vaspin kit, Catalog No. SK 00560-01).

The data were presented in mean and standard deviations (mean \pm SD). Analysis of the data used ANOVA and the Spearman correlation test to determine the relationship between vaspin level and fasting blood glucose levels, with a value of $p <0.05$ was considered significant.

RESULTS AND DISCUSSIONS

Sixty (60) females were obtained as participants of this research. The research used only female subjects based on the prevalence study previously, the incidence of obesity was higher in females than males, in addition to gain homogeneity of research subjects, so
the variation of the data was not high. Characteristics of research subjects can be seen in Table 1.

The results showed that the mean age in the obese group II was 47.7 ± 10.5 years old, the obese group I was 42.8 ± 11.2 years old and in a non-obese group the average age was younger than obese group I and II with the mean was 25.37 ± 1.7 years old. These results indicated that aging is related to the increasing of obesity incidence. The data corresponded with the results from a survey of Indonesia's obesity and overweight prevalence in 200410 and was in accordance with the results of a research in the United States,11 which stated that the prevalence of obesity was increased with the enhancement of age.

The enhancement of obesity incidence is in line with the aging process, which is associated with substantial changes in body composition. After 30 years old, there is a progressive decrease in body fat-free mass, otherwise there is an increase in body fat mass. The relationship between energy intake and energy expenditure is an important determinant factor of body fat mass. The enhancement of total fat mass that occurs in aging is due to increased energy intake, decrease energy expenditure, or both.12 The reduction of energy expenditure is due to decrease of basal metabolic rate13 and decrease in physical activity along with aging.14 A hormonal change also played a role in the increasing accumulation of fat in aging. In the aging process there is a decline in growth hormone secretion and development of leptin resistance. A decline in growth hormone secretion will lead to an increase in fat mass. Resistance to the leptin causes a decrease in the body’s ability to reduce appetite.15,16

The mean fasting blood glucose levels are presented in Table 1. Based on these data, our analysis found a significant difference (p=0.017) between the mean fasting blood glucose levels in group obese II (BMI ≥ 30) and group obese I (BMI 25–29.9), with non-obese group (BMI <25). Fasting blood glucose levels in non-obese group was lower than fasting blood glucose in obese group I and II, but there was no significant difference of fasting blood glucose levels in the obese group I and II. The results indicated that an increasing in fat mass in obesity can lead to enhancement of fasting blood glucose level. A previous study had found a strong correlation between increased BMI with the occurrence of diabetes mellitus. This finding can be explained that obesity may induce insulin resistance due to decrease in insulin receptor sensitivity along with weight gain.17 There was no significant difference between fasting blood glucose levels and the degree of obesity, where both of obese groups were equally increased in fasting blood glucose levels. The weakness of this research was that the researcher did not measure insulin sensitivity index or insulin resistance index in the participants. Other researchers mentioned that the increase of blood glucose levels in obesity can also be caused by an increase in the resistin secretion. Resistin is a hormone produced by fat tissues which undergo an inflammation process. Resistin has an opposite effect on insulin in adipose tissue.18 Based on our study, most of the results of blood glucose levels measurement in obese group showed a normal level. Further studies with index of insulin sensitivity, index of insulin resistance and resistin level measurement are needed to explain the mechanism of blood glucose increase in obesity.

The results of serum levels vaspin measurements were presented in Table 1. Based on this analysis, a significant difference (p=0.00) was towards between the average levels of vaspin in the obese group II (BMI ≥ 30) and obese I group (BMI 25–29.9), compared with vaspin level in the non-obese group (BMI <25). Serum vaspin levels in non-obese group were lower than the vaspin levels in obese groups I and II. There was no significant difference between the vaspin level in the obese group I and II. The study showed that the levels of vaspin in the obese people were higher than non-obese and the serum vaspin levels were not affected by the degree of obesity. The correlation test results showed there was a significant positive relationship between the level of vaspin with fasting blood glucose levels, but the strength of correlation was poor (r=0.384; p=0.001).

Table 1. Characteristics of research subjects

<table>
<thead>
<tr>
<th>Body Mass Index (BMI)</th>
<th>Category</th>
<th>Number (people)</th>
<th>Mean ± SD of age (y.o)</th>
<th>Mean ± SD of fasting blood glucose level (mg/dL)</th>
<th>Mean ± SD of vaspin level (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI ≥ 30</td>
<td>Obese II</td>
<td>40</td>
<td>47.7±10.5</td>
<td>93.03±35.70*</td>
<td>90.91±18.68*</td>
</tr>
<tr>
<td>BMI 25-29.9</td>
<td>Obese I</td>
<td>10</td>
<td>42.8±11.2</td>
<td>84.20±20.01*</td>
<td>95.81±11.39*</td>
</tr>
<tr>
<td>BMI < 25</td>
<td>Non-obese</td>
<td>10</td>
<td>25.37±1.7</td>
<td>61.00±7.08</td>
<td>60.06±7.98</td>
</tr>
</tbody>
</table>

Note: * p<0.05 compared to non-obese group
Vaspin or Visceral adipose tissue-derived serpin is one of the adipocytokines, produced by visceral fat tissue, which is recently found. Vaspin is a family member of the serine protease inhibitor (serpin). Serpin has several functions, including regulating protein breakdown or proteolysis by inhibition and affecting various biochemical pathways within the cell. Regulation of protease enzyme activity plays an important role in maintaining homeostasis in the body. It is known that the serpin has many functions, including regulating cell differentiation, the complement cascade, regulation of intracellular proteolysis and modulation of immune response.

A previous research found that high serum levels vaspin increase and decrease insulin sensitivity in obese conditions. It is presumed that while there is an increase in fat mass, adipocytes will produce high proinflammatory cytokines causing insulin resistance, with the result an increase in blood glucose levels. Vaspin will act as an inhibitor of protease enzyme in the hormone of blood glucose regulation. The enhancement of vaspin synthesis is a mechanism to inhibit the protease enzyme that reduces the action of insulin. This statement proven by the treatment with recombinant vaspin in rats, could suppress the expression of multiple genes of adipocytokines such as leptin, resistin and Tumor Necrosis Factor (TNF)-α, adipocytokines which cause insulin resistance in peripheral tissues. Treatment with vaspin also increases the expression of glucose transporter 4 (Glut-4) and adiponectin, which improves insulin resistance. Therefore, from this study it was presumed that the condition of obesity, which shows fat tissue enhancement, will increase the risk of insulin resistance and cause increase in blood glucose levels. The increase of blood glucose levels leads to the enhancement of vaspin secretion by adipose tissue, as a compensatory mechanism to improve insulin sensitivity. Unfortunately, although significant, the correlation test of our results about vaspin level with fasting blood glucose level in this study was poor and insulin sensitivity index had not been measured yet. Further study is needed to clarify.

CONCLUSIONS AND SUGGESTIONS

The results of these study showed that there was a significant positive correlation between vaspin levels and fasting blood glucose levels in obese conditions, but the correlation strength was poor. Further studies are needed by measuring the insulin sensitivity index, to clarify the relationship between vaspin, as adipocytokines play a role in insulin sensitivity, to blood glucose levels in obese people.

REFERENCES

17. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw, 2006; 17(1): 4–12.