CONTENTS

RESEARCH

Serum Zinc and C-Reactive Protein Levels as Risk Factors for Mortality in Systemic Inflammatory Response Syndrome
(Kadar Zinc dan C-Reactive Protein Serum Sebagai Faktor Kebahayaan Kematian di Pasien Systemic Inflammatory Response Syndrome)
Dwi Retnoningrum, Banundari Rachmawati, Dian Widyaningrum .. 1–5

Correlations between Mean Platelet Volume and Immature Platelet Fraction to Hemoglobin A1c in Patients with Type 2 Diabetes Mellitus
(Kenasaban antara Mean Platelet Volume dan Immature Platelet Fraction terhadap Hemoglobin A1c di Pasien Diabetes Melitus Tipe 2)
Dian W Astuti, Sony Wibisono, Arifoel Hajat, Sidarti Soehita .. 6–11

Methicillin-Resistant Staphylococcus Aureus Colonization and Screening Method Effectiveness for Patients Admitted to the Intensive Care
(Keadian dan Ketepatgunaan Penapisan Kolonisasi Methicillin-Resistant Staphylococcus aureus di Pasien Perawatan Intensif)
Andaru Dahesihdewi, Budi Mulyono, Iwan Dwiprahasto, Supra Wimbarti ... 12–18

Correlation between Visceral Adipose Tissue-Derived Serpin with Fasting Blood Glucose Level in Obesity
(Hubungan Kadar Visceral Adipose Tissue-Derived Serpin Dengan Kadar Glukosa Darah Puasa Pada Kegemukan)
Novi Khila Firani, Agustin Iskandar, Anik Widijanti, Nonong Eriani .. 19–23

Serum Glial Fibrillary Acidic Protein Levels Profile in Patients with Severe Traumatic Brain Injury
(Profil Kadar Glial Fibrillary Acidic Protein Serum di Pasien Cedera Otak Berat)
Arief S. Hariyanto, Endang Retnowati, Agus Turchan .. 24–28

Phylogenetic Profile of Escherichia coli Causing Bloodstream Infection and Its Clinical Aspect
(Profil Filogenetik Escherichia coli Penyebab Infeksi Aliran Darah dan Aspek Klinisnya)
Osman Sianipar, Widya Asmara, Iwan Dwiprahasto, Budi Mulyono ... 29–35

Comparison of Glycemic State in Patients with and without Hyperuricemia
(Perbedaan Status Glikemia pada Pasien dengan dan tanpa Hiperurisemia)
Corrie Abednego, Banundari Rachmawati, Muji Rahayu .. 36–41

Analysis of Laboratory Parameters as Sepsis Markers in Neonatalts with Neonatal Infection
(Analisis Tolok Ukur Laboratorium Sebagai Petanda Sepsis di Neonatus dengan Neonatal Infection)
Bachtiar Syamsir, Rachmawati Mulhiddin, Uleng Bahrun ... 42–46

Correlation Percentage of S and G2/M with Percentage of Lymphoblasts in Pediatric Acute Lymphoblastic Leukemia
(Kenasaban Persentase S dan G2/M dengan Persentase Limfoblas di Pasien Leukemia Limfoblastik Akut Anak)
Erawati Armayani, Yetti Hernaningsih, Endang Retnowati, Suprapto Ma`at, I Dewa Gede Ugrasena . 47–52
Correlation of Blast Percentage to CD34 of Bone Marrow in All Pediatric Patients
(Kenasaban Persentase Blas Dengan CD34 di Sumsum Tulang pada Pasien LLA Anak)
Rahmi Rusanti, Yetti Hernaningsih, Endang Retnowati, Mia Ratwita Andarsini, Andy Cahyadi 53–58

Analysis of Decreased Glucose Level in Stored Samples Correlated to Serum Separation and Temperature Storage
(Analisis Penurunan Glukosa Dari Sampel Yang Disimpan Dalam Kaitannya Dengan Pemisahan Serum dan Suhu Penyimpanan)
Gustamin, Liong Boy Kurniawan, Ruland DN Pakasi ... 59–63

Diagnostic Concordance between Next Generation and High Sensitive Troponin-I in Angina Pectoris Patients
(Kesesuaian Diagnostik Troponin-I Next generation dan High sensitive di Pasien Angina Pectoris)
Erna R Tobing, Jusak Nugraha, Muhammad Ammnuuddin .. 64–69

Elevated Serum S100B Protein Level as a Parameter for Bad Outcome in Severe Traumatic Brain Injury Patients
(Peningkatan Kadar Serum Protein S100B Sebagai Tolok Kualu Buruk di Pasien Cedera Kepala Berat)
Ridha Dharma, Dina Keumal Sari, Ratna Akbari Ganie ... 70–75

Analysis of Mean Platelet Volume As A Marker For Myocardial Infarction and Non-Myocardial Infarction in Acute Coronary Syndrome
(Analisis Mean Platelet Volume sebagai Pembeda Infark Miokard dan Non-Infark Miokard di Sindrom Koroner Akut)
Wandani Syahrir, Liong Boy Kurniawan, Darmawaty Rauf .. 76–80

Anti-Dengue IgG/IgM Ratio for Secondary Adult Dengue Infection in Surabaya
(Rasio IgG/IgM Anti Dengue untuk Infeksi Dengue Sekunder Dewasa di Surabaya)
Aryati, Puspa Wardhani, Ade Rochaeni, Jeine Stela Akualing, Usman Hadi .. 81–85

Analysis of Blood Urea Nitrogen/Creatinin Ratio to Predict the Gastrointestinal Bleeding Tract Site
(Analisis Rasio Blood Urea Nirogen/Kreatinin Untuk Meramalkan Lokasi Perdarahan pada Saluran Cerna)
Arfandhy Sanda, Mutmainnah, Ibrahim Abdul Samad .. 86–90

The Differences of Sodium, Potassium and Chloride Levels in STEMI and NSTEMI Patients
(Perbedaan Kadar Natrium, Kalium dan Klorida di Pasien STEMI dan NSTEMI)
Freddy Ciptono, Muji Rahayu ... 91–94

LITERATURE REVIEW

Macrophage Autophagy in Immune Response
(Otofagi Makrofag dalam Respons Imun)
Jusak Nugraha ... 95–101

CASE REPORT

Very Severe Hypertriglyceridemia in Suspected Familial Chylomicronemia Infant
(Hipertrigliseridemia Sangat Berat di Bayi Terduga Kausa Familial Chylomicronemia)
Fitry Hamka, Liong Boy Kurniawan, Suci Aprianti ... 102–107
ANTI DENGUE IGG/IGM RATIO FOR SECONDARY ADULT DENGUE INFECTION IN SURABAYA

(Rasio IgG/IgM Anti Dengue untuk Infeksi Dengue Sekunder Dewasa di Surabaya)

Aryati1, Puspa Wardhani1, Ade Rochaeni2, Jeine Stela Akualing2, Usman Hadi3

ABSTRACT

Dengue infection is classified into primary and secondary infection based on the antibody response. Secondary infection needs to be distinguished from primary infection because it often results in severe clinical manifestations. Hemagglutination inhibition test as the gold standard for determining primary or secondary infection is not practical because it requires a pair of sera collected at sufficient time intervals. The study aim was to determine the cut-off ratio of anti-dengue IgG/IgM for secondary adult dengue infections in Surabaya. Subjects were dengue infection patients with positive results for NS1 and/or dengue PCR. Anti-dengue IgG/IgM ratio obtained by dividing the IgG to IgM index value by ELISA method. Cut off point for IgG/IgM ratio was determined by ROC curve. Based on the reactivity of IgM and IgG ELISA, 19 (31.1%) were primary infection and 42 (68.9%) were secondary infection. PCR result was dominated by DEN-3 serotype. Optimal cut off ratio of IgG/IgM ≥0.927 as a predictor for secondary infection showed a sensitivity of 66.7% and specificity of 63.2%. The optimal cut-off values of anti-dengue IgM and IgG as a predictor of secondary dengue infection were also analyzed. Results were IgM ≥1.515 and IgG ≥2.034 with a sensitivity and specificity of 85.7% and 84.2%; 100% and 100%, respectively. In conclusion, the ratio of IgG/IgM ≥0.927 could not be used as a single predictor of secondary infection while cut off IgG ≥2.034 could be considered as a predictor of secondary infection.

Key words: Dengue, secondary infection, ratio, IgG, IgM

INTRODUCTION

Dengue virus infection is an infectious disease caused by dengue virus (DEN), which consists of four serotypes namely DEN-1, DEN-2, DEN-3, DEN-4. The disease remains a significant health problem in Indonesia because it is endemic and arises throughout the year.1 Vaccine or effective antiviral agents for dengue virus infection have not been available yet.2,3 Dengue infection causes varying clinical manifestation.
from an undifferentiated fever (Dengue Fever, DF) to the more severe forms Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS).

Based on the antibody response, dengue infection is classified into primary and secondary infection. A primary infection (the first infection by dengue virus or another flavivirus) is characterized by slow and low titre antibody production and IgM anti-dengue is the first class of antibody produced. Anti-dengue IgG is produced 2 weeks after infection. In contrast, during secondary infection (previously infected by dengue virus another flavivirus) IgG titer rises rapidly from 2 days after the onset of fever while the anti-dengue IgM may take a long time to be detected or may be undetectable.

Clinical manifestation in secondary infection is more severe than in primary infection. Some literature stated that primary infection only caused a condition called febrile self limiting disease, while secondary infections could cause severe complications in the form of DHF/DSS. Based on these reasons it is very necessary to distinguish secondary infection from primary infection to determine a better prognosis and not only detecting a positive or negative result of dengue virus infection.

Hemagglutination Inhibition (HI) test as the gold standard for determining primary or secondary infection is not practical because it requires a pair of sera collected (acute phase and convalescent phase) at appropriate intervals (7–10 days). In dengue-endemic areas, IgM lasting in the circulation can lead to high false-positive results. Those positive results of IgM in such individuals may be caused by IgM formed in 8 months earlier infection. Several studies were conducted to find the relationship between immune response and type of infection using ratio. Research at several different places showed the different cut-off ratio of anti-dengue IgG/IgM for secondary infection. The aim of this study was to determine the cut-off ratio of anti-dengue IgG/IgM for secondary adult dengue infections in Surabaya.

METHODS

A total of 61 selected patients were collected from the Tropical Disease Ward Dr. Soetomo Hospital. Patients having fever (2–7 days), signs and symptoms of dengue infection (grading and severity infection according to the 2011 WHO criteria) with a positive result of NS1 rapid test and/or PCR dengue were enrolled in this study conducted in March-August 2016. Patients having concomitant diseases such as autoimmune diseases, HIV/AIDS, other immunodeficiency diseases and malignancy that were obtained from medical records and lysis, jaundice or lipemic sera were rejected. Blood samples were collected from patients, aseptically, processed for serum separation and immediately transferred to a -80°C deep freezer until further processed. Ethical clearances were obtained from the Medical Research Ethics Committees of Airlangga University Surabaya.

Dengue NS1 antigen qualitative detection was performed using SD Bioline Dengue Duo rapid test according to the manufacture’s protocol. The presence of only one color line (“C”) indicated a negative result and the presence of two color lines (“T” band and “C” line) indicated a positive result. No “C” line in result indicated invalid and should be re-tested.

RNA virus was extracted automatically using Magna Pure LC Total Nucleic Acid Isolation (Roche) kit and the Magna Pure LC 2.0 instrument. The isolation principle worked by magnetic-beads technology. Samples were lysed through an incubation process using a special buffer containing chaotropic salt and proteinase K. Magnetic glass particles (MGPs) were added so the total viral nucleic acid in the sample were bound to the surface of MGPs. The substance not bound was discharged through multiple washing steps and purified total viral nucleic acid was eluted using a low salt-buffer.

RNA virus detection and serotyping were performed by Simplexa™ Dengue kit (Focus Diagnostics) with 3M Integrated Cycler Instrument. The assay is a real-time reverse transcription Polymerase Chain Reaction (RT-PCR) that discriminate serotypes 1 and 4 in one reaction (well) and serotypes 2 and 3 in another reaction (well). Amplification and detection used bi-functional fluorescent probe-primers and reverse primers. The assay amplified 4 serotypes specific region: dengue 1 (NS5 gene), dengue 2 (NS3 gene), dengue 3 (NS5 gene) and dengue 4 (capsid gene). RNA control is used to monitor the extraction process and to detect RT-PCR inhibitor.

Dengue RNA extraction and RT-PCR were performed at the Eijkman Molecular Biology Institute Jakarta.

Anti-dengue IgM and IgG were performed by Panbio Dengue Duo IgM and IgG Capture ELISA in the Laboratory of Tropical and Infectious Disease Hospital. In the Panbio Dengue Duo IgM Capture and IgG capture ELISA, IgM and IgG were determined in separate wells of the assay plate using a common assay method. The result was an index value and classified as positive, negative and equivocal according to the manufacturer’s protocol. Reactivity of anti-dengue IgM and IgG were performed by Panbio Dengue Duo IgM and IgG Capture ELISA in the Laboratory of Tropical and Infectious Disease Hospital. In the Panbio Dengue Duo IgM Capture and IgG capture ELISA, IgM and IgG were determined in separate wells of the assay plate using a common assay method. The result was an index value and classified as positive, negative and equivocal according to the manufacturer’s protocol.
IgM and IgG ELISA were also used to determine the infection status (primary or secondary infection). Samples with positive IgG antibody results obtained in acute phase was considered as a secondary infection. The ratio of anti-dengue IgG/IgM was calculated from IgG index value dividing by the IgM index value. The cut off point for IgG/IgM ratio was determined by the Receiver Operator Characteristic (ROC) curve.

RESULTS AND DISCUSSION

A total of 133 adult patients with clinical sign of dengue were initially enrolled in the study conducted from March–August 2016, therefore only of 61 samples were eligible for serological testing with positive result of NS1 and/or PCR dengue.

Both NS1 antigen and RT-PCR are useful for early diagnosis of dengue infection. NS1 antigen is essential for viral replication and can be detected in infected serum samples from the first day up to day 9 to 18 after the onset of fever.13 The Specificity of NS1 antigen was as high as the gold standard of dengue viral culture or PCR.1 In the present study, the highest positivity examination NS1 was on day 5 of fever whereas PCR on day 4 of fever (Figure 1). A previous study, both NS1 and RT-PCR was detectable on day 1 of days post onset of illness, while maximum positivity was seen from day 2 to 5 post onset of illness.13

Based on the reactivity of anti-dengue IgM and IgG ELISA, 19 (31.1%) patients were classified into primary infection and 42 (68.9%) were secondary infection. Subject characteristics, clinical, laboratory and serological data of patients with primary and secondary infection are shown in Table 1.

The most prevalent severity of dengue primary infection was DHF grade I and DF, while in secondary

Table 1. Subject characteristics

<table>
<thead>
<tr>
<th>Subject characteristics</th>
<th>Primary infection (n=19)</th>
<th>Secondary infection (n=42)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>13 (68.4)</td>
<td>23 (54.8)</td>
<td>0.404a</td>
</tr>
<tr>
<td>Female</td>
<td>6 (31.6)</td>
<td>19 (45.2)</td>
<td></td>
</tr>
<tr>
<td>Age, year, mean (SD)</td>
<td>27.9 (12)</td>
<td>22 (8.7)</td>
<td>0.064b</td>
</tr>
<tr>
<td>Thrombocyte count, mean (SD)</td>
<td>83521.1(46100)</td>
<td>49207.1(33680,9)</td>
<td>0.000b</td>
</tr>
<tr>
<td>Day of Fever, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10 (52.6)</td>
<td>1 (2.4)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 (21.1)</td>
<td>11 (26.2)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3 (15.8)</td>
<td>18 (42.8)</td>
<td>0.000c</td>
</tr>
<tr>
<td>6</td>
<td>2 (10.5)</td>
<td>7 (16.7)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0 (0)</td>
<td>5 (11.9)</td>
<td></td>
</tr>
<tr>
<td>Clinical manifestation, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>7 (36.8)</td>
<td>3 (7.1)</td>
<td></td>
</tr>
<tr>
<td>DHF I</td>
<td>8 (42.1)</td>
<td>20 (47.7)</td>
<td>0.026c</td>
</tr>
<tr>
<td>DHF II</td>
<td>3 (15.8)</td>
<td>16 (38.1)</td>
<td></td>
</tr>
<tr>
<td>DHF III</td>
<td>1 (5.3)</td>
<td>3 (7.1)</td>
<td></td>
</tr>
<tr>
<td>Serotype, n</td>
<td></td>
<td></td>
<td>0.031c</td>
</tr>
<tr>
<td>DEN-1</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>DEN-2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DEN-3</td>
<td>13</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>DEN-4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

a Fisher’s exact test, p < 0.05
b Independent t test, p < 0.05
c Chi-square, p < 0.05

Figure 1. Positivity of NS1 and dengue PCR based on day of fever

Download this table as a CSV.
infections DHF grade I and DHF grade II. This result showed that DHF could also occur in primary infection, although DHF occurred more frequently in secondary infection. This is supported by a virus virulence theory that stated virulent dengue virus strains caused DHF while avirulent dengue virus strains caused DF.14

Dengue PCR result was dominated by DEN-3 serotype, similar to the result of Fedik15 at the Dr Soetomo Hospital.15 Different results obtained by Ginting16 with the dominant serotype was DEN-2 and Aryati17 was DEN-1.16,17 Dengue domination serotype in dynamic and domination changing can happen all the time. Dengue serotype domination changing as well as of the presence of multiple infections every year, played an important role in spreading of dengue infection.17

Index value of anti-dengue IgM ELISA in primary infection varied between 0.325 to 6.578 and in the secondary infection varied between 0.506 to 6.793. The index value of anti-dengue IgG ELISA in primary infection varied between 0.123 to 1.777 and in the secondary infection varied between 2.291 to 6.687. The study found that anti-dengue IgG/IgM ratio ≥0.927 as a predictor for secondary infection showed a sensitivity of 66.7% and specificity of 63.2%, Positive Predictive Value (PPV) 80.0%, Negative Predictive Value (NPV) 46.2%, Positive Likelihood Ratio (LR +) of 1.81 and a Negative Likelihood Ratio (LR-) 0.53. (Figure 2 and Table 2).

Some researches were done to differentiate between primary and secondary infection using the ratio of IgG/IgM resulting various cut off points. A study in Bali (2006) in children hospitalized for suspected dengue infection found an IgG/IgM ratio of ≥1.1 as a good predictor of secondary infection (sensitivity 87.5% and specificity 92.9%). Innis et al10 in Thailand using HI test as gold standard found that the best cut off points for secondary infection was ≥1.78 (sensitivity 92% and specificity 96%). Sai Kit Lam6 in Malaysia found that the best cut off point for secondary infection was ≥ 2.0 (sensitivity 95% and specificity 94%). Cucunwangsib7 in Banten found that the best cut off point for secondary infection was ≥ 1.14 (sensitivity 80.56% and specificity 91.67%). These differences in cut off values of ratio can be caused due to the different geographic locations, characteristics of the subjects and seroepidemiology which may affect the antibody response generated and the severity of the disease.6,7 It also has been recently demonstrated that the ratios vary depending whether the patients has a serological non-classical or classical dengue infection and the ratios have been redefined taking into consideration the four subgroups of classical infection with dengue.4 Vaughn18 revealed that some important factors that play a role in the pathogenesis of DHF included specific virulent virus genotypes with high replication rate that can lead to an increase of immune response and disease severity; a genetic

![Figure 2](image.png)

Figure 2. ROC Curve : (a). Cut-off value of anti-dengue IgG/IgM ratio (b) Cut-off value of anti-dengue IgM and (c) Cut-off value of anti-dengue IgG for secondary infection

<table>
<thead>
<tr>
<th>Cut off</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
<th>LR +</th>
<th>LR -</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG/IgM ≥0.927</td>
<td>66.7%</td>
<td>63.2</td>
<td>80.0</td>
<td>46.2</td>
<td>1.81</td>
<td>0.53</td>
</tr>
<tr>
<td>IgM ≥1.515</td>
<td>85.7</td>
<td>92.3</td>
<td>92.3</td>
<td>72.7</td>
<td>5.43</td>
<td>0.17</td>
</tr>
<tr>
<td>IgG ≥2.034</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA = not available
predisposition to certain disease and other risk factors such as age, sex and nutrition.18

The optimal cut-off values of anti-dengue IgM and IgG as a predictor of secondary infection dengue were also analyzed. Results were IgM cut-off ≥ 1.515 and IgG cut-off ≥ 2.034 with a sensitivity and specificity of 85.7\% and 84.2\%; 100\% and 100\%, respectively (Figure 2 and Table 2). A study by Sang et al19 found that the results of anti-dengue IgG capture ELISA (Panbio Dengue Duo) showed an excellent correlation with HI test. Cut-off ratio of IgG anti-dengue ≥ 3.0 can be used to distinguish between primary infection and secondary, where the cut off values classify correctly 88\% of primary infection and 98\% of secondary infections using the HI test as the gold standard and this method was superior to the use of IgG/IgM ratio reported previously.19

CONCLUSION AND SUGGESTION

The cut-off ratio of anti-dengue IgG/IgM ≥ 0.927 with a sensitivity 66.7\% and specificity 63.2\% could not be used as a single predictor of secondary infection while the cut-off IgG ≥ 2.034 with a sensitivity 100\% dan specificity 100\% could be considered as a predictor of secondary infection.

A larger sample size is required and anti-dengue IgM and IgG examination performed in the acute and convalescent phase to determine the kinetics (serologic pattern) of anti-dengue IgM and IgG associated with the type and severity degree of dengue infection.

REFERENCES

8. Standard Diagnostic Inc. SD Bioline Dengue Duo NS1 Antigen
11. Panbio Diagnostics, Panbio Dengue IgM Capture ELISA, Cat No.01PE20.2104
12. Panbio Diagnostics, Panbio Dengue IgG Capture ELISA, Cat No. 01PE10.2014