CONTENTS

RESEARCH

Serum Zinc and C-Reactive Protein Levels as Risk Factors for Mortality in Systemic Inflammatory Response Syndrome
(Kadar Zinc dan C-Reactive Protein Serum Sebagai Faktor Kebahayaan Kematian di Pasien Systemic Inflammatory Response Syndrome)
Dwi Retnoningrum, Banundari Rachmawati, Dian Widyaningrum .. 1–5

Correlations between Mean Platelet Volume and Immature Platelet Fraction to Hemoglobin A1c in Patients with Type 2 Diabetes Mellitus
(Kenasaban antara Mean Platelet Volume dan Immature Platelet Fraction terhadap Hemoglobin A1c di Pasien Diabetes Melitus Tipe 2)
Dian W Astuti, Sony Wibisono, Arifoel Hajat, Sidarti Soehita .. 6–11

Methicillin-Resistant Staphylococcus Aureus Colonization and Screening Method Effectiveness for Patients Admitted to the Intensive Care
(Kejadian dan Ketepatgunaan Penapisan Kolonisasi Methicillin-Resistant Staphylococcus aureus di Pasien Perawatan Intensif)
Andaru Dahesihdewi, Budi Mulyono, Iwan Dwiprahasto, Supra Wimbarti ... 12–18

Correlation between Visceral Adipose Tissue-Derived Serpin with Fasting Blood Glucose Level in Obesity
(Hubungan Kadar Visceral Adipose Tissue-Derived Serpin Dengan Kadar Glukosa Darah Puasa Pada Kegemukan)
Novi Khila Firani, Agustin Iskandar, Anik Widijanti, Nonong Eriani ... 19–23

Serum Gliarial Fibrillary Acidic Protein Levels Profile in Patients with Severe Traumatic Brain Injury
(Profil Kadar Gliarial Fibrillary Acidic Protein Serum di Pasien Cedera Otak Berat)
Arief S. Haryanto, Endang Retnowati, Agus Turchan .. 24–28

Phylogenetic Profile of Escherichia coli Causing Bloodstream Infection and Its Clinical Aspect
(Profil Filogenetik Escherichia coli Penyebab Infeksi Aliran Darah dan Aspek Klinisnya)
Osman Sianipar, Widya Asmara, Iwan Dwiprahasto, Budi Mulyono ... 29–35

Comparison of Glycemic State in Patients with and without Hyperuricemia
(Perbedaan Status Glikemia pada Pasien dengan dan tanpa Hiperurisemia)
Corrie Abednego, Banundari Rachmawati, Muji Rahayu .. 36–41

Analysis of Laboratory Parameters as Sepsis Markers in Neonatals with Hyperbilirubinemia
(Analisis Tolok Ukur Laboratorium Sebagai Petanda Sepsis di Neonatus dengan Hiperbilirubinemia)
Bachtiar Syamsir, Rachmawati Muhibbun, Ulang Bahrin .. 42–46

Correlation Percentage of S and G2/M with Percentage of Lymphoblasts in Pediatric Acute Lymphoblastic Leukemia
(Kenasaban Persentase S dan G2/M dengan Persentase Limfoblas di Pasien Leukemia Limfoblastik Akut Anak)
Erawati Armayani, Yetti Hernaningsih, Endang Retnowati, Suprapto Ma´at, I Dewa Gede Ugrasena . 47–52
Correlation of Blast Percentage to CD34 of Bone Marrow in All Pediatric Patients
(Kenasaban Persentase Blas Dengan CD34 di Sumsum Tulang pada Pasien LLA Anak)
Rahmi Rusanti, Yetti Hernaningsih, Endang Retnowati, Mia Ratwita Andarsini, Andy Cahyadi 53–58

Analysis of Decreased Glucose Level in Stored Samples Correlated to Serum Separation and Temperature Storage
(Analisis Penurunan Glukosa Dari Sampel Yang Disimpan Dalam Kaitannya Dengan Pemisahan Serum dan Suhu Penyimpanan)
Gustamin, Liong Boy Kurniawan, Ruland DN Pakasi .. 59–63

Diagnostic Concordance between Next Generation and High Sensitive Troponin-I in Angina Pectoris Patients
(Kesesuaian Diagnostik Troponin-I Next generation dan High sensitive di Pasien Angina Pectoris)
Erna R Tobing, Jusak Nugraha, Muhammad Ammimuddin .. 64–69

Analysis of Mean Platelet Volume As A Marker For Bad Outcome in Severe Traumatic Brain Injury Patients
(Analisis Mean Platelet Volume sebagai Pembeda Infark Miokard dan Non-Infark Miokard di Sindrom Koroner Akut)
Ridha Dharmajaya, Dina Keumala Sari, Ratna Akbari Ganie .. 70–75

Elevated Serum S100B Protein Level as a Parameter for Bad Outcome in Severe Traumatic Brain Injury Patients
(Peningkatan Kadar Serum Protein S100B Sebagai Tolok Keluaran Buruk di Pasien Cedera Kepala Berat)
Wandani Syahrir, Liong Boy Kurniawan, Darmawaty Rauf .. 76–80

Anti-Dengue IgG/IgM Ratio for Secondary Adult Dengue Infection in Surabaya
(Rasio IgG/IgM Anti Dengue untuk Infeksi Dengue Sekunder Dewasa di Surabaya)
Aryati, Puspa Wardhani, Ade Rochaeni, Jeine Stela Akualing, Usman Hadi ... 81–85

Analysis of Mean Platelet Volume sebagai Pembeda Infark Miokard dan Non-Infark Miokard di Sindrom Koroner Akut)
Wandani Syahrir, Liong Boy Kurniawan, Darmawaty Rauf .. 76–80

Anti-Dengue IgG/IgM Ratio for Secondary Adult Dengue Infection in Surabaya
(Rasio IgG/IgM Anti Dengue untuk Infeksi Dengue Sekunder Dewasa di Surabaya)
Aryati, Puspa Wardhani, Ade Rochaeni, Jeine Stela Akualing, Usman Hadi ... 81–85

Analysis of Blood Urea Nitrogen/Creatinin Ratio to Predict the Gastrointestinal Bleeding Tract Site
(Analisis Rasio Blood Urea Nirogen/Kreatinin Untuk Meramalkan Lokasi Perdarahan pada Saluran Cerna)
Arfandhy Sanda, Mutmainnah, Ibrahim Abdul Samad ... 86–90

The Differences of Sodium, Potassium and Chloride Levels in STEMI and NSTEMI Patients
(Perbedaan Kadar Natrium, Kalium dan Klorida di Pasien STEMI dan NSTEMI)
Freddy Ciptono, Muji Rahayu .. 91–94

LITERATURE REVIEW

Macrophage Autophagy in Immune Response
(Otofagi Makrofag dalam Respons Imun)
Jusak Nugraha ... 95–101

CASE REPORT

Very Severe Hypertriglyceridemia in Suspected Familial Chylomicronemia Infant
(Hipertrigliseridemia Sangat Berat di Bayi Terduga Kausa Familial Chylomicronemia)
Fitry Hamka, Liong Boy Kurniawan, Suci Aprianti .. 102–107

Thanks to editors in duty of IJCP & ML Vol 24 No. 1 November 2017
Rismawati Yawir, Purwanto AP, Sidarti Soehita, July Kumalawati, Aryati, Rahyuningsih Dharma, Adi Koesoema Aman, Yolanda Probohoesodo, Puspa Wardhani
THE DIFFERENCES OF SODIUM, POTASSIUM AND CHLORIDE LEVELS IN STEMI AND NSTEMI PATIENTS
(Perbedaan Kadar Natrium, Kalium dan Klorida di Pasien STEMI dan NSTEMI)

Freddy Ciptono, Muji Rahayu

ABSTRACT
Myocardial infarction has become one of the biggest causes of death in the world which is 30% of global death rate. STEMI and NSTEMI are distinguished by the degree of ischemia in the form of ST-segment elevation in the ECG of STEMI patients. Increased levels of cardiac enzymes are also found in both STEMI and NSTEMI. Several previous studies revealed changes in electrolyte levels in patients with myocardial infarction. This study aimed to analyze the differences in sodium, potassium and chloride levels of STEMI and NSTEMI patients. Cross-sectional design study, subjects were STEMI and NSTEMI patients which were treated at the Dr.Kariadi Hospital, Semarang with typical angina complaints, ECG with or without ST-segment elevation, accompanied by an increase of cardiac enzyme levels exceeding the diagnostic limit levels. The data of sodium and chloride were analyzed by student’s t-test and the data of potassium was analyzed by Mann Whitney U Test. Significant when p< 0.05. This study was conducted on 60 subjects with an average age of 53.9 years in the group of STEMI and 58.47 in the NSTEMI group. There were significant differences in sodium levels between STEMI and NSTEMI patients (p=0.00). Potassium levels (p=0.625) and chloride (p=0.423) had no significant differences between the two groups. There were significant differences between the levels of sodium in patients with NSTEMI and STEMI (p <0.05). Sodium levels were lower in patients with STEMI and it had a potential to be a laboratory biomarker in making the differential diagnosis between STEMI and NSTEMI.

Key words: Myocardial infarction, STEMI, NSTEMI, sodium, potassium, chloride
INTRODUCTION

Myocardial infarction has been considered as the biggest factor causing death in the world, reaching 30% of global mortality.\(^1\),\(^2\) A previous research even stated that 4% of the population in Indonesia has experienced angina.\(^3\)

Myocardial infarction, moreover, is part of an acute coronary syndrome, involving some clinical situations, such as ST-Segment Elevation Myocardial Infarction (STEMI) and Non-ST-Segment Elevation Myocardial Infarction (NSTEMI). Myocardial infarction, thus, is a condition that can occur due to the state of ischemia prolonged in the heart muscle, where the availability of blood flow to the heart through the coronary arteries decreases beyond the critical threshold and then defeats the repair mechanism of cardiac muscle in maintaining normal homeostasis and function. As a result, this condition leads to irreversible damage and death of heart muscle cells.\(^4\),\(^5\)

Consequently, a quick and easy diagnosis is essentially needed since early treatment is expected to improve patient safety. Myocardial infarction is usually characterized by typical chest pain, changes in ECG and increased heart enzymes. Thus, cardiac enzymes, such as troponin and CKMB, must be examined to support and confirm the diagnosis of myocardial infarction.\(^6\),\(^7\)

In addition, electrolyte level is also impaired in the state of myocardial infarction. Electrolyte ions, especially sodium and potassium, are needed in generating the activation of the heart muscles, having a continual displacement between the intracellular and extracellular spaces, either by passive or active diffusion. The membranes of the heart muscle cells that are damaged in the state of myocardial infarction then will interfere with the sodium, potassium, and chloride channels, as well as sodium-potassium pumps, resulting in disruption of sodium and potassium levels in blood serum.\(^8\)-\(^11\)

Therefore, this research aimed to determine whether there were differences in levels of sodium, potassium and chloride between STEMI and NSTEMI patients. This research was expected to improve knowledge about the significances of sodium, potassium and chloride levels used as parameters in the diagnosis of STEMI and NSTEMI patients.

METHODS

This research was a cross-sectional study conducted from January to September at the Dr. Kariadi Semarang. Data used were taken from the medical records of patients diagnosed with myocardial infarction based on the diagnostic criteria of the European Society of Cardiology (ESC), The American College of Cardiology Foundation (ACCF), American Heart Association (AHA) and the World Heart Federation (WHF).\(^12\) Those patients were then categorized into two groups based on the results of the ECG and cardiac enzymes, namely STEMI patients and NSTEMI patients. Those patients were also hospitalized in the Dr. Kariadi Hospital, Semarang during the research period.

This research involved sixty patients, aged over 18, consisting of 44 males and 16 females. Thirty patients were diagnosed with ST-Segment Elevation Myocardial Infarction (STEMI) together with angina symptoms based on ECG results as well as increased cardiac enzymes. Meanwhile, the other thirty subjects were diagnosed with NSTEMI together with angina symptoms based on ECG results as well as increased cardiac enzymes. However, those patients with comorbidities, such as kidney failure, diarrhea, stroke, COPD, gastrointestinal bleeding and cardiac surgery that can interfere with cardiac enzymes and electrolyte levels were excluded from this research. In addition, material used was blood serum. Ethical clearance then was obtained from the Committee of Medical and Health Research Ethics in Faculty of Medicine, University of Diponegoro, Semarang.

Next, electrolyte level examination was performed by using ion selective electrode method by ADVIA 1800 and TMS 50i. Normality test then was carried out by using Saphiro-Wilk test. Results of Saphiro-Wilk test indicated whether the data were normally distributed with a mean ± SD of 95% CI. Afterwards, different tests were conducted by using T-test. The abnormally distributed data were presented in median form (the lowest value–the highest value) and then analyzed by using Mann Whitney U Test. Results of the statistical test were considered to be significant if p < 0.05.

RESULTS AND DISCUSSION

This research involved myocardial infarction patients with STEMI and NSTEMI treated in the Dr. Kariadi Hospital, Semarang. The total number of subjects who met the inclusion and exclusion criteria were 30 patients with STEMI and 30 patients with NSTEMI. The STEMI group consisted of 23 males (76.67%) and 7 females (23.33%) with an average age of 53.9 years. Meanwhile, the NSTEMI group consisted of 21 males (70%) and 9 females (30%) with
The Differences of Sodium, Potassium and Chloride Levels - Ciptono and Rahayu

Table 1. Characteristics of the research subjects

<table>
<thead>
<tr>
<th>Parameters</th>
<th>STEMI</th>
<th>NSTEMI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>23 (76.67%)</td>
<td>21 (70%)</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>7 (23.33%)</td>
<td>9 (30%)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>53.9 ± 9.182</td>
<td>58.47 ± 9.576</td>
<td>0.064</td>
</tr>
<tr>
<td>Sodium (mmol/L)</td>
<td>134.27 ± 3.81</td>
<td>138.23 ± 3.31</td>
<td>0.00</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>3.95 (3.1 – 4.5)</td>
<td>3.95 (3.3 – 4.8)</td>
<td>0.625</td>
</tr>
<tr>
<td>Chloride (mmol/L)</td>
<td>100.03 ± 4.01</td>
<td>100.77 ± 2.94</td>
<td>0.423</td>
</tr>
</tbody>
</table>

an average age of 58.47 years. Characteristics of the research subjects can be seen in Table 1.

Normally distributed data were indicated with mean ± standard deviation and non-paired T-test. Non normally distributed data were indicated with median (min-max) and Mann-Whitney test.

The results showed that the mean percentage of sodium level in the STEMI group was 134.27 ± 3.81 mmol/L. Meanwhile, the mean percentage of sodium level in the NSTEMI group was 138.23 ± 3.31 mmol/L. It means that the lower sodium level was found in the STEMI group. Thus, it can be said that there was a significant difference in sodium level between the two groups (p=0.00). Moreover, the median potassium levels in the STEMI group was 3.95 (3.1-4.5) mmol/L and 3.95 (3.3-4.8) mmol/L in the NSTEMI group. It means that there was no significant difference in potassium level between both groups (p=0.625). Similarly, there was no significant difference in chloride levels between the two groups (p=0.423), which is also in line with previous researches. The mean chloride level in the STEMI group was 100.03 ± 4.01 mmol/L and 100.77 ± 2.94 in the NSTEMI group.

Furthermore, the significant difference in sodium level between the STEMI group and NSTEMI group may suggest that disturbances in the sodium and potassium channels as well as in sodium-potassium pumps tend to occur more in STEMI patients than in NSTEMI patients, corresponding to the degree of ischemia experienced. Similarly, previous researches conducted by Mati et al.9 and Wali and Yatiraj10 showed that hyponatremia and hypokalemia are often found in patients with myocardial infarction. Like those two previous researches, in this research hyponatremia was mostly found in the STEMI group (14 patients), while only five patients in the NSTEMI group.

In addition, myocardial infarction will also lead to hypoxia and ischemia, affecting the permeability of the heart muscle membrane so that sodium diffuses more easily into the cells, as well as decreasing the function of the sodium-potassium pumps so that sodium cannot be pumped out of the cell, resulting in hyponatremia.8,13-15 Hyponatremia in patients with myocardial infarction may also occur due to non-osmotic secretion of vasopressin, which then triggers a water excretion disorder, resulting in hyponatremia due to plasma dilution.9 In another previous research conducted by Goldberg et al and reinforced by other previous researches, the presence of hyponatremia in STEMI patients from the beginning of treatment or during the first 72 hours is independently associated with an increased risk of death in the first 30 days and in long-term.16-18

On the other hand, the incidence of hypokalemia was found in 8 patients of the STEMI group (26.67%) and 5 patients of the NSTEMI group (16.67%). The results of this research, however, were not in line with results of the previous researches conducted by Mati et al, Wali and Yatiraj.9,10 The low percentage of hypokalemia in those two research groups as well as the presence of insignificant differences may be due to the number of the subjects or the disrupting factors of electrolyte levels, especially potassium, which have not been considered before, such as the use of drugs and the presence of coexisting diseases affecting potassium level.

CONCLUSION AND SUGGESTION

In conclusion, there was a difference in sodium levels between STEMI and NSTEMI patients (p <0.05). But, there was no difference in potassium and chloride levels between STEMI and NSTEMI patients (p> 0.05). The low level of sodium in STEMI patients can be considered as one of the laboratory markers in making differential diagnoses between STEMI and NSTEMI. This condition can also determine the effects of electrolyte level in the pathogenesis and treatment of patients with myocardial infarction.

As a result, further researches must involve more subjects with more detailed data, such as drug use and history of other diseases. Further researches also had
better focus more on hyponatremia and hypokalemia as predictors of mortality and morbidity rates between STEMI and NSTEMI patients.

REFERENCES

