CONTENTS

RESEARCHS

Molecular Aspect Correlation between Glycated Hemoglobin (HbA1c), Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT) on Type 2 Diabetes Mellitus (T2DM)
(Aspek molekuler Hubungan Kadar Hemoglobin Terglikasi (HbA1c), Prothrombin Time (PT) dan Activated Partial Thromboplastin Time (APTT) di Diabetes Melitus Tipe 2)
Indranila KS ... 1–6

Platelet-Lymphocyte Ratio (PLR) Markers in Acute Coronary Syndrome
(Platelet Lymphocyte Ratio (PLR) Sebagai Petanda Sindrom Koroner Akut)
Haerani Harun, Uleng Bahrun, Darmawaty ER ... 7–11

The Mutation Status of Kras Gene Codon 12 and 13 in Colorectal Adenocarcinoma
(Status Mutasi Gen Kras Kodon 12 dan 13 di Adenocarcinoma Colorectal)
Gondo Mastutiik, Alphania Rahniayu, Anny Setijo Rahaju, Nila Kurniasari, Reny I’tishom 12–17

Creatine Kinase Related to the Mortality in Myocardial Infarction
(Creatine Kinase terhadap Angka Kematian di Infark Miokard)
Liong Boy Kurniawan, Uleng Bahrun, Darmawaty Rauf, Mansyur Arif .. 18–21

Application of DNA Methylation on Urine Sample for Age Estimation
(Penggunaan Metilasi DNA Dalam Perkirakan Umur Individu di Sampel Air Kemih)
Rosalinda Avia Eryatma, Puspa Wardhani, Ahmad Yudianto .. 22–26

Lipid Profile Analysis on Regular and Non-Regular Blood Donors
(Analisis Profil Lipid di Pendonor Darah Reguler dan Non-Reguler)
Waode Rusdiah, Rachmawati Muhiddin, Mansyur Arif ... 27–30

Percentage of CD3⁺ T Lymphocytes Expressing IFN-γ After CFP-10 Stimulation
(Persentase Limfosit T-CD3⁺ yang Mengekspresikan Interferon Gamma Setelah Stimulasi Antigen CFP-10)
Yulia Nadar Indrasari, Betty Agustina Tambunan, Jusak Nugraha, Fransiska Sri Oetami 31–35

Characteristics of Crossmatch Types in Compatibility Testing on Diagnosis and Blood Types Using Gel Method
(Ciri Inkompatibilitas Uji Cocok Serasi Metode Gel terhadap Diagnosis dan Golongan Darah)
Irawaty, Rachmawati AM, Mansyur Arif ... 36–41

Diagnostic Values of Mycobacterium Tuberculosis 38 kDa Antigen in Urine and Serum of Childhood Tuberculosis
(Nilai Diagnostik Antigen 38 kDa Mycobacterium tuberculosis Air Kemih dan Serum di Tuberkulosis Anak)
Agustin Iskandar, Leliawaty, Maimun Z. Arthamin, Ery Olivianto 42–49

Erythrocyte Indices to Differentiate Iron Deficiency Anemia From β Trait Thalassemia
(Indeks Eritrosit Untuk Membedakan Anemia Defisiensi Besi Dengan Thalassemia β Trait)
Yohanes Salim, Ninik Sukartini, Arini Setiawati ... 50–55
HbA1c Levels in Type 2 Diabetes Mellitus Patients with and without Incidence of Thrombotic Stroke
(Kadar HbA1c Pasien Diabetes Melitus Tipe 2 Dengan dan Tanpa Kejadian Stroke Infark Trombotik)
Dafina Balqis, Yudhi Adrianto, Jongky Hendro Prayitno ... 56–60

Comparative Ratio of BCR-ABL Genes with PCR Method Using the Codification of G6PD and ABL
Genes in Chronic Myeloid Leukemia Patients
(Perbandingan Angka Banding Gen BCR-ABL Metode PCR Menggunakan Baku Gen Glucosa-6-
Phosphate Dehidrogenase dan Gen Abelson Kinase di Pasien Chronic Myeloid Leukemia)
Tonggo Gerdina Panjaitan, Delita Prihatni, Agnes Rengga Indrati, Amaylia Oehadian 61–66

Virological and Immunological Response to Anti-Retroviral Treatment in HIV-Infected Patients
(Respons Virologis dan Immunologis Terhadap Pengobatan Anti-Retroviral di Pasien Terinfeksi HIV)
Umi S. Intansari, Yunika Puspa Dewi, Mohammad Juffrie, Marsyawan HNE Soesatyo,
Yamri W Subronto, Budi Mulyono .. 67–73

Comparison of sdLDL-C Analysis Using Srisawasdi Method and Homogeneous Enzymatic Assay
Method on Hypertriglyceridemia Condition
(Perbandingan Analisa sdLDL-C metode Srisawasdi dan Homogeneous Enzymatic Assay di Kondisi
Hipertrigliseridemia)
Gilang Nugraha, Soebagijo Poegoeh Edijanto, Edhi Rianto ... 74–79

Pattern of Bacteria and Their Antibiotic Sensitivity in Sepsis Patients
(Pola Kuman dan Kepekaan terhadap Antibiotik di Pasien Sepsis)
Wahyuni, Nurahmi, Benny Rusli .. 80–83

The Correlation of Naive CD4+ T Lymphocyte Cell Percentage, Interleukin-4 Levels and Total
Immunoglobulin E in Patients with Allergic Asthma
(Kenasaban antara Persentase Sel Limfosit T-CD4+ Naive dengan Kadar Interleukin-4 dan Jumlah
Imunoglobulin E Total di Pasien Asma Alergi)
Si Ngr. Oka Putrawan, Endang Retnowati, Daniel Maranatha ... 84–89

LITERATURE REVIEW

Antibiogram
(antibiogram)
Jeine Stela Akualing, IGAA Putri Sri Rejeki ... 90–95

CASE REPORT

Pancreatic Cancer in 31 Years Old Patient with Normal Serum Amylase Level
(Kanker Pankreas di Pasien Ura 31 Tahun Dengan Kadar Amilase Serum Normal)
Melda F. Flora, Budiono Raharjo, Maimun Z. Arthamin... 96–101
ERYTHROCYTE INDICES TO DIFFERENTIATE IRON DEFICIENCY ANEMIA FROM β TRAIT THALASSEMIA
(Indeks Eritrosit untuk Membedakan Anemia Defisiensi Besi dengan Thalassemia β Trait)

Yohanes Salim1, Ninik Sukartini1, Arini Setiawati2

ABSTRACT
Iron deficiency anemia and β trait thalassemia are the most common causes of microcytic hypochromic anemia in Indonesia. Differentiation between them is difficult when solely based on a hematologic examination; additional laboratory tests are required such as ferritin and hemoglobin analysis. However, not all laboratories can perform these tests. Many erythrocytes indices have been proposed to determine whether a blood sample is more suggestive for iron deficiency anemia or trait thalassemia. Unfortunately these indices have different diagnostic values in many countries and there is no data yet about the diagnostic value in Indonesia. This study performed diagnostic tests for Mentzer, RDW, Green-King and Sirdah Indices and developed a new cut-off point that could make a better diagnostic value. This study consisted of 98 subjects of iron deficiency anemia and 80 subjects of β trait thalassemia. Diagnostic values of Mentzer Index were sensitivity 83.6%, specificity 66.2%, PPV 75.2%, NPV 76.8%, while RDW Index had a sensitivity of 91.8%, specificity of 75.2%, PPV 81.8% and NPV 88.2%. Diagnostic values of Green-King Index were as follows, sensitivity 96.9%, specificity 67.5%, PPV 78.5%, NPV 94.7%, and diagnostic values of Sirdah Index showed a sensitivity of 92.8%, specificity of 58.7%, PPV 73.3% and NPV 87.0%. The new cut-off point of Mentzer, RDW, Green-King, and Sirdah Index were 13.44, 233.4, 75.06 and 32.52, respectively. All indices can be applied for Indonesian people, among which Green-King Index had the best diagnostic value.

Key words: Iron deficiency anemia, β trait thalassemia, Mentzer, Green-King, Sirdah

1 Department of Clinical Pathology, Faculty of Medicine, University of Indonesia/RSUPN Dr.Cipto Mangunkusumo Hospital, Jakarta, Indonesia. E-mail: dryohanessalim@gmail.com
2 Department of Clinical Pharmacology, Faculty of Medicine, University of Indonesia/RSUPN Dr.Cipto Mangunkusumo Hospital, Jakarta, Indonesia
INTRODUCTION

Iron deficiency anemia and β trait thalassemia are the most common causes of hypochromic microcytic anemia found in developing countries and in countries with endemic thalassemia disease, such as Indonesia. However, both are difficult to distinguish just by hematology examination. Thus, additional laboratory tests, such as iron status and hemoglobin analysis are needed to distinguish although they require additional time and expense, as well as not all laboratories can perform the examination.

Many researches actually have been conducted to distinguish these two diseases easily, fast, practically, simply and accurately using erythrocytes indices consisting of a formula and cut-off values for four decades. The formula of erythrocyte index involves a parameter that already exist on hematological examination using automated blood cell count. Unfortunately, erythrocyte indices have different diagnostic values in each country and in Indonesia there are still no data used to compare the diagnostic values of various erythrocyte indices at once. England, Shine-Lal and Rajabiani also have suggested to set cut-off values of each index in different populations.

Therefore, this research aimed to obtain diagnostic values and cut-off values in order to provide better diagnostic values than the standard cut-off ones set by each previous respective index. Erythrocyte index studied in this research is a familiar index that has good diagnostic values in other countries, such as Mentzer, Red Cell Distribution Width (RDW), Green-King and Sirah. Thus, the results of this research are expected to help clinicians in differentiating iron deficiency anemia from β trait thalassemia using erythrocyte index screening when there is limited analysis of hemoglobin and ferritin examination.

METHODS

This research is a retrospective diagnostic test. Subjects in this research were patients with definitive iron deficiency anemia and β trait thalassemia undergoing several examinations complete hematology, hemoglobin electrophoresis, SI, UIBC, TIBC, transferrin saturation, and ferritin levels in the Department of Clinical Pathology, Dr. Cipto Mangunkusumo Hospital from August 2010 to July 2015. Subjects were of the age of over 12 months with some exclusion criteria for both groups, namely abnormal leukocyte count and abnormal absolute reticulocyte count. Another exclusion criterion for the group of iron-deficiency anemia is low platelet count. Meanwhile, other exclusion criteria for the group of β trait thalassemia were abnormal platelet count, iron status, serum ferritin levels and low transferrin saturation.

Operational constraints for iron deficiency anemia, moreover, were determined based on Hb of <13 g/dL for adult males <12 g/dL for females, or less than the Hb reference value according to age; MCV of <82 fL for adults or less than the MCV reference value according to age; MCH of <27 pg for an adult or less than the MCH reference value according to age; serum ferritin level of <30 ng/mL for males and <13 ng/mL for females and/or transferrin saturation <15%; as well as normal or decreased hemoglobin fraction, HbA2, without HbH fraction. Thalassemia β trait, on the other hand, was determined by a decrease in hemoglobin concentration, MCV and MCH. Like iron deficiency anemia, thalassemia β trait was also determined with serum ferritin level of >30 ng/mL for men, >13 ng/mL for women and/or transferrin saturation of >15%, with the results of hemoglobin analysis indicating β thalassemia trait, HbA2 fractions from 3.8 to 7.0%.

Next, categorical variable data were presented in percentages. Numerical variable data were tested using Kolmogorov-Smirnov test to determine the distribution of the data. If the normal distribution of data was presented in mean (standard deviation), and the abnormal distribution of data was presented in median and minimum-maximum value range.

The formula to get the index value of each subject is listed in Table 1. Having obtained the Index value, the subjects of deficiency anemia and β-thalassemia trait were separated based on the cut-off value as seen in Table 2 for Mentzer Index. Each index was tested diagnostically with 2×2 table to get sensitivity value, specificity value, Positive Predictive Value (PPV), Negative Predictive Value (NPV), Positive Likelihood Ratio (PLR) and Negative Likelihood Ratio (NLR). With ROC curve obtained by using SPSS, the cut-off value of new index then was determined to produce the most optimal diagnostic value.

RESULTS AND DISCUSSION

Based on data from August 2010 to July 2015, the number of subjects in research met the criteria was 178 subjects, 98 of whom were categorized as iron deficiency anemia patients (55%), while 80 of whom were categorized as thalassemia β trait patients (45%). The subjects of this research had also been selected so that there was no combined diagnosis and/or...
Table 1. Calculated index

<table>
<thead>
<tr>
<th>Index</th>
<th>Formula*</th>
<th>Cut-off values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentzer</td>
<td>MCV/Erythrocyte count >13 = Iron deficiency anemia</td>
<td><13 = β Trait thalassemia</td>
</tr>
<tr>
<td>RDW</td>
<td>MCV×RDW/Erythrocyte count >220 = Iron deficiency anemia</td>
<td><220 = β Trait thalassemia</td>
</tr>
<tr>
<td>Green-King</td>
<td>MCV×MCV×RDW/(Hb×100) >65 = Iron deficiency anemia</td>
<td><65 = β Trait thalassemia</td>
</tr>
<tr>
<td>Sirdah</td>
<td>MCV–Erythrocyte Count– (3×Hb) >27 = Iron deficiency anemia</td>
<td><27 = β Trait thalassemia</td>
</tr>
</tbody>
</table>

*MCV (fl), Erythrocyte Count (∗10^6), RDW (%), Hb (g/dL)

Table 2. Diagnostic test with Mentzer index on iron deficiency anemia

<table>
<thead>
<tr>
<th>Mentzer index</th>
<th>Iron deficiency anemia</th>
<th>β trait thalassemia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>>13</td>
<td>a</td>
<td>b</td>
<td>a+b</td>
</tr>
<tr>
<td><13</td>
<td>c</td>
<td>d</td>
<td>c+d</td>
</tr>
<tr>
<td>Total</td>
<td>a+c</td>
<td>b+d</td>
<td>a+b+c+d</td>
</tr>
</tbody>
</table>

Table 3. Laboratory results of subjects with hypochromic microcytic anemia

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Iron deficiency anemia</th>
<th>β thalassemia trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>8.36 (1.8)*</td>
<td>10.6 (7.4-12.4)**, mean 10.23</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>28.23 (4.89)*</td>
<td>32.90 (22.58-39.12)**</td>
</tr>
<tr>
<td>Erythrocyte count</td>
<td>4.18 (0.71)*</td>
<td>5.24 (0.66)*</td>
</tr>
<tr>
<td>MCV</td>
<td>67.83 (7.71)*</td>
<td>61.87 (4.94)*</td>
</tr>
<tr>
<td>MCH</td>
<td>20.04 (3.38)*</td>
<td>19.83 (1.65)*</td>
</tr>
<tr>
<td>Leukocyte</td>
<td>7.72 (1.57)*</td>
<td>7.77 (1.77)*</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>321.5 (155-755)**, mean 347.5</td>
<td>286.61 (72)*</td>
</tr>
<tr>
<td>RDW-CV</td>
<td>18.58 (2.90)*</td>
<td>16.10 (14.1-27.6)**, mean 16.8</td>
</tr>
<tr>
<td>Reticulocyte</td>
<td>49.711 (25.254-93.958)**</td>
<td>69.988 (25.326-97.026)**</td>
</tr>
<tr>
<td>HbA</td>
<td>97.8 (96.7-98.7)**</td>
<td>94.3 (85.8-95.9)**</td>
</tr>
<tr>
<td>HbF</td>
<td>0 (0-0.4)**</td>
<td>0.4 (0-7.2)**</td>
</tr>
<tr>
<td>HbA2</td>
<td>2.2 (1.3-3.3)**</td>
<td>5.15 (0.57)*</td>
</tr>
<tr>
<td>Ferritin</td>
<td>5.7 (0.5-18.6)**</td>
<td>90.35 (17.7-2.058)**</td>
</tr>
</tbody>
</table>

* Normal distribution of data presented in the mean (SD) ** Abnormal distribution of data presented in median (min-max)

no chronic anemia disease in accordance with the inclusion and exclusion criteria.

Furthermore, the laboratory results of complete hematology, hemoglobin fraction, and ferritin were shown in Table 2. All research subjects with hypochromic microcytic anemia were determined by a decrease in hemoglobin concentration, MCV and MCH. In Table 3, the mean of Hb levels in β thalassemia trait was higher than that of iron deficiency anemia. This was because the clinical spectrum of β thalassemia trait was from asymptomatic to intermedia, whereas iron deficiency anemia depended on underlying causes, so the obtained Hb level was derived from severe to mild iron deficiency anemia.

In iron deficiency anemia, the mean of MCV was higher than that of β thalassemia trait. This was due to iron deficiency anemia which had an erythrocyte spectrum from normocytic to microcytic volume in iron deficiency anemia. Considering the average lifespan erythrocytes of 120 days, erythrocytes were still normocytic at the age near 120 days before iron deficiency anemia occurred and were then mixed with
microcytic erythrocytes that had already experienced iron deficiency anemia. In β thalassemia trait, erythrocyte volume tended to be stable microcytic, so MCV mean was not affected by normal erythrocyte volume as in iron deficiency anemia. Consequently, RDW-CV in β thalassemia trait was higher than that in iron deficiency anemia. Table 4 summarized the diagnostic values of Mentzer index, RDW, Green-King, and Sirdah.

The diagnostic values obtained in this research were not exactly the same as those in studies in other countries. It could be due to differences in the subjects studied. This research used data of subjects with definitive iron deficiency anemia and β-thalassemia trait, both from Outpatient and Inpatient clinics, so they are considered to have a diverse clinical spectrum. In studies in several other countries, the subjects used were mostly patients undergoing medical check-up or clinically healthy, so they obtained 'typical' subjects. Nonetheless, the trend of the diagnostic values in this research was still quite similar because it showed results of sensitivity and specificity obtained of approximately 65–90%.

Sensitivity of Mentzer index in this research, was similar to the sensitivity in researches conducted by Vehapoglu in Turkey (82.3%) and Moghaddam in Iran (82%) and Niazi in Pakistan (81%) although the specificity was different (respectively 98.7, 72 and 89%). The differences in specificity was due to differences in population characteristics of β thalassemia trait. The formula of Mentzer index showed MCV divided by erythrocyte count. In Moghaddam's research, the mean MCV was 61 fL and erythrocyte count was 7.1 (in 10⁶/μL), so the average value of the index was 8.59. Meanwhile, in this research, the mean MCV was 61.8 fL and erythrocyte count was 5.24 (in 10⁶/μL), so the mean value of the index was 11.79. This difference could be seen in the erythrocyte count in Moghaddam's research which was larger. The larger erythrocyte count as the denominator resulted in a smaller index value than that in this research. The index values of β thalassemia trait subjects in this research tended to be more at the value of >13 compared to those in Moghaddam's research, so a decrease in specificity occurred.

The sensitivity in RDW index in this research, was similar to the sensitivity in researches conducted by Matos in Brazil (93.8%) and Huang in Taiwan (93%) although their specificity was different from this research (80.9 and 81%). The difference in specificity was due to differences in population characteristics of β thalassemia trait. The formula of RDW index showed MCVxRDW/erythrocyte count. In the research conducted by Huang, the mean MCV was 63.7 fL, RDW 15.8%, and erythrocyte count 5.47 (in 10⁶/μL), so the mean value of the index was 181.9. In the research conducted by Huang, the mean MCV was 62.4 fL, RDW 16.8% and erythrocyte count 5.24 (in 10⁶/μL), so the mean value of the index was 198.1. The difference of this research was that compared to Matos and Huang, the mean MCV was the smallest one, RDW was the greatest one and the erythrocyte count was the smallest one. In other words, if the MCV value as the numerator was small it will generate a small index value, but if the RDW as the numerator was large and erythrocyte count as the denominator was small it can generate a large index value. This means that the mean of the index in this research was greater than that in those two studies. Therefore, β thalassemia trait subjects in this research tended to be more likely to have a value of >220 compared to those in the researches of Matos and Huang resulting in a decrease in specificity.

In addition, sensitivity in Green-King index in this research was similar to sensitivity in some researches conducted by Keikhaei in Iran (94.3%) and Huang in Taiwan (94%) even though the specificity in those researches was different from that in this research (90.9 and 83%). This difference in specificity was due to differences in population characteristics of β thalassemia trait. The formula of Green-King index showed MCV×MCV×RDW/(Hb×100). In the research conducted by Huang, the mean MCV was 62.4 fL,
The determination of the optimal cut-off values was aimed to obtain the highest diagnostic value that could be generated by a test tool. In ROC curve in Figure 1, the optimal cut-off value was closest to the upper left corner of the ROC curve. The optimal cut-off value could also be determined from a table of SPSS showing optimum results of the sum of sensitivity and specificity. The new cut-off values obtained in this research were 13.44 for Mentzer index, 233.4 for RDW, 75.06 for Green-King, and 32.52 for Sirdah. This indicated that all of the new cut-off values were higher than the standard cut-off values that had already been set. The different optimal cut-off values among the researchers were because of differences in population of each region. In this research, both diseases were considered to have the same interest power, thus, the optimal cut-off values were used.

Cut-off values can practically be modified according to clinical purposes. If it is wanted to obtain a higher sensitivity for screening needed, the cut-off values could be decreased, followed by a decrease in the specificity. In this research, erythrocyte index with the new cut-off value with the best diagnostic value was derived from the Green-King index with a sensitivity of 94.8% and a specificity of 83.7%. Based on these results, the use of Green-King index was suggested with a cut-off value of 75.06 to distinguish iron deficiency anemia from β thalassemia trait. The diagnostic value with a new cut-off value could provide better results because it could show a higher accumulation of sensitivity and specificity than using the determined cut-off values. Therefore, it is advisable to set a new cut-off value.
CONCLUSIONS AND SUGGESTION

In conclusion, indices which could be applied to the people of Indonesia were Green-King index, RDW, Sirdah and Mentzer. However, the index which provided the best diagnostic value was Green-King. Mentzer index diagnostic values showed a sensitivity of 83.6%, specificity of 66.2%, PPV of 75.2%, NPV of 76.8%, PLR of 2.4 and NLR of 0.2. RDW index diagnostic values showed a sensitivity of 91.8%, specificity of 75%, PPV of 81.8%, NPV of 88.2%, PLR of 3.6 and NLR of 0.1. Green-King index diagnostic values shows a sensitivity of 96.9%, specificity of 67.5%, PPV of 78.5%, NPV of 94.7%, PLR of 2.9 and NLR of 0.04. While, Sirdah index diagnostic values showed a sensitivity of 92.8%, specificity of 58.7%, PPV of 73.3%, NPV of 87.0%, PLR of 2.2 and NLR of 0.1. Thus, the new optimal cut-off values obtained were 13.44 for Mentzer, 233.4 for RDW, 75.06 for Green-King and 32.52 for Sirdah. The Green-King index with the cut-off value of 75.06 was considered as a simple screening tool in order to distinguish iron deficiency anemia from beta-thalassemia trait using automated blood cell instrument with RDW-CV parameters. Therefore, it was suggested that diagnostic testing should be conducted in different populations of various areas.

REFERENCES